
MedBot: an Ambulance Robot Controller

Ibraheem Alhashim
School of Computing Science

Simon Fraser University

April 11, 2009

Abstract

In this paper, we present a simple implementation of an ambulance
robot controller. The responsibility of the ambulance in the system is to
transport dead robots from their current location to a nearby charging
station. This helps in solving the problem of having dead robots in the
environment resulting in a more robust and autonomous system. Results
from a simulated MedBot controller indicate a slight increase in system
performance. The implementation was done using the robot simulator
Stage from the Player Project.

1 Introduction

One of the most important aspects of an autonomous mobile robot is its ability
to stay functional for long periods. In order to achieve full autonomy with
no human intervention, robots must charge their selves when they are low on
energy[2]. The simplest approach that humans use for most rechargeable devices
is to recharge the device’s battery upon reaching a certain level of remaining
stored energy. This is usually the case for devices that relay on sources of
energy that are only physically available in certain locations in the system’s
environment.

There are several proposed methods for calculating a good estimate of the
energy level reached that would trigger a recharging state[5]. However, finding
the best recharging threshold does not guarantee a long lived fully autonomous
system. This is especially the case when a robot controller is used on real
world robots that operate in unpredictable environments. An example of such
environment would be an underground mine in which different sections of the
cave are vulnerable to collapses[1]. A mining robot might calculate a recharging
threshold based on one of the available routes. If that route no longer exists the
robot will run out of energy and will eventually reach a dead state.

Recovering dead robots have not been specifically studied in the literature
since it falls under the simple task of picking up objects. This paper describes
a simple implementation of such system and present the dynamics involved in
using an ambulance robot.

1



Figure 1: MedBot work cycle

2 Motivation

Most robots are specifically designed to perform certain tasks and would need
human intervention for matters relating to maintenance and system failure[6, 3].
For a fully autonomous system, the robots need to relay on themselves to recover
from such situations. Designing a robot that performs its tasks along with a
recovery mechanism is extremely complicated and in some cases impossible. If
a robot loses the ability to control its movement it will not be able to help itself.
The only possible solution would be outside interference. Therefore, the need
arise for a specialized robot that helps achieve such positive interference.

The ambulance robot described in this paper helps immobile robots reach a
destination where it is possible for them to recharge or get fixed. In this paper we
are concerned with the case of running out of battery and the need to recharge.
A system with such robots allows for the possibility of performing jobs that
require energy beyond the threshold specified for a worker robot. The situation
is also similar to working in an unpredictable environments where paths may
change and the threshold does not work for the modified environment.

The idea of having a system with different robots designed for different tasks
relates to real world systems such as hospitals or construction sites. In these
systems, different people with different skill sets are assigned to different jobs.
All agents in the system are needed to achieve robustness and good performance.

3 Controller Design

The robot controller implemented for the MedBot ambulance is a state based
controller. The underlying code is based on the Fasr controller supplied with the
Stage 3.1.0 simulator from the Player Project[4]. Most of the navigation aspects
of the controller are predefined and are specific to one environment called the
Cave map. The ambulance follows five major states in every work cycle shown
in Figure 1.

2



3.1 Idle State

In this state, the robot tries to locate a special charging station that can only
supply an ambulance robot with energy. The specialization of charging stations
helps reduce the traffic congestion by separating the different types of robots.
Once the robot gets close enough to such charging station, it will remain in a
parked status. The only movement needed at this state while in the parked
status is obstacle avoidance. This is helpful for situations when a moving object
approaches the ambulance and the only possible way to avoid a crash is to move
away.

For the implementation described in this paper, the MedBot unit monitors
the battery level of all worker robots in the environment. If a robot is found to
be in a dead state, where the energy level is below a certain threshold, its state
would change to the rescue state.

3.2 Rescue State

In this state, the MedBot robot tries to navigate itself close enough to a specific
dead robot. The location of the dead robot on the map is known to the MedBot.
The MedBot uses a predefined map of the environment and estimates a good
route from its position to the dead robot area. It is worth mentioning that using
good navigation schemes would result in a faster more efficient effort for a rescue
job. Once the MedBot reaches a significantly close distance to the dead robot
it will change its state into the loading state.

3.3 Loading State

The dead robot needs to be loaded onto the MedBot body for transportation.
There are several concepts of the notation of loading. These include lifting
the dead robots over the MedBot, dragging it, pushing it, or possibly in an
open environment one can design the MedBot to conduct an airborne rescue
operation.

The implementation for this paper does not take into account the mechanics
of lifting the dead robot and assumes that it is a trivial task. For the sake
of simplicity it is assumed in the implementation that the dead robot would
be placed on top of the MedBot. Figure 2 shows the loading state during a
simulation.

There are several possibilities for a more realistic design. One possible design
is to include arms, or forks, similar to the ones used in waste collection vehicles.
Another possible design may include a type of arm that extends to the dead
robot and hooks it self to its body and drag it (e.g. tow trucks).Once the dead
robot is on-board the MedBot controller will change state into the transport
state.

3



(a) A MedBot lifting a dead robot (b) A dead robot positioned on top of
a MedBot

Figure 2: Loading state

3.4 Transport State

The MedBot needs to transport the dead robot to the assigned charging station
area. The MedBot can locate the area by following the same navigation plan
used in locating its own charging station with different coordinates. An am-
bulance robot should take into consideration its new form and must deal with
issues like its own battery level, power consumption, and obstacle avoidance
with a robot on board. In our implementation the only change considered was
the threshold considered for a low battery. If a MedBot has a dead robot on
board, its threshold would be lower than it is in the idle state.

3.5 Unloading

The optimal option for unloading a dead robot would be for the MedBot to
try and place the dead robot in its designated charging station. Care must
be taken for this mechanism to work since there are a number of possibilities
where it can go wrong. If a robot miscalculates the position of the charging
station and leaves a dead robot in such state then the charging station would be
nonfunctional since no other robot can use it. Also, if a robot does not anticipate
another robot docking into the same charging station while it is unloading then
the probability of each robot’s sensor not detecting the other would increase
and would result in a crash.

The unloading operation implemented for this paper uses a simple solution
that works when the dead robot is not functional because of its lack of energy.
The solution is easy to implement and takes care of the problems resulting in
the unloading process. Once the MedBot reaches the area of a charging station
it will try to unload the dead robot close enough to the station but not too close
as to cause collisions. Before leaving the dead robot, the MedBot triggers an
override mechanism in the dead robot making it change its status from dead
to alive. The robot would then be able to fall back into its regular charging

4



routine. For this to work, the dead robot needs to signal its dead status while
maintaining a small amount of energy enough to allow it to dock to a charging
station nearby.

Once the MedBot finishes the unloading operation it will change its status
to idle and the entire cycle repeats again.

4 Experiments

Several experiments have been conducted with, and without, the help of MedBot
units. The goal of the experiments is to investigate the impact of having an
ambulance robot withing an existing system.

4.1 Setup

The environment in which the experiments were conducted is the Cave environ-
ment. This environment is provided within the Stage simulator (version 3.1.0).
It encloses an area of 256m2 with two separated areas consisting of a source and
a sink for simulated robot tasks (referred to as flags). The map also includes an
area where four charging stations are located along one of the walls.

The experiments were done with two MedBot units located near the flags
source area. These units share two of their own special charging station. The
location of these charging stations is arbitrary and it was chosen in an area that
does not result in much interference with the traffic of worker robots. Figure 3
shows the initial setup of each experiment.

4.2 Autonomous Operation

Several experiments were conducted without the assistance of MedBot units to
find a suitable and conservative estimate of the battery threshold for the worker
robots. The benchmark for such estimate was set to be 10 hours of autonomous
work of collecting flags from the source area to the sink destination. The system
is found to be stable around the value 46%. Although this value seem to be large,
the experiments have shown that thresholds with lower values result in robots
dieing before the end of the 10 hours benchmark.

4.3 MedBot

By experimenting with thresholds lower than 46%, we can test the performance
of the system with the aid of our ambulance robots. A simple performance
metric of flags collected per hour is used in all of the experiments. Figure 4
shows the rate of flags collected in four different experiments with the rates
46%, 30%, 20% and 10%. The total number of flags collected during the entire
simulation time is shown in Figure 5.

In the case of a 10% threshold, we notice a highly unstable rate of collection.
This is a result of high dependency on MedBot that in turn results in higher

5



Figure 3: The Cave environment. Worker robots are located close to the sink
area in the top right corner. The two MedBot units can be seen at the bottom
left corner near the source area.

rates of dead robots, thus, reducing the system’s performance. Table 1 shows
the average number of flags collected per hour during each 10 hour experiment
with the different thresholds. The best performance was achieved when the
threshold is at 20%.

Balancing between having a conservative estimate and depending heavily on
the MedBot robots results in the best performance. The experiments showed
that a 20% threshold, for the current environment, is a good estimate for the
worker robots. In the case where such estimate breaks, the MedBot’s response
compensate for the error and the system returns back to normal.

4.4 Analysis

The results of our experiments showed a slight increase in the system perfor-
mance due to the inclusion of MedBot robots. The idea of having a backup plan
for a low threshold can be thought of as being equivalent to having an extra
battery capacity. Another advantage of having a MedBot is its ability to clear
traffic congestion caused by dead robots especially in bottlenecks throughout the
environment. One last practical advantage worth mentioning is one for robot

Hunger at 46% 30% with MedBot 20% with MedBot 10% with MedBot
294 296 323 301

Table 1: Average flags collected per hour

6



������������������

����������	
�	�

���� �� �� �	� ��� �
� ��� ��� �	� 	�� 	
��������������������� ������������������������ ������������������������ ������������������������
Figure 4: Rate of flags collected

���������������������������

���
���

��
��	

�	

�

������� �� ��� ��� ��� ��� ��� ���
��������

��������	�
�� ��������	������	�������	
��������	�������	�������	 ��������	�������	�������	

Figure 5: Total number of flags collected in a 10 hours period

7



designers. Having an ambulance robot allows designers to conduct real life tests
of their robots on the field while knowing that a MedBot will return faulty or
dead units back to safety.

However, adding agents to a system increases complexity and comes with
a number of disadvantages. The presence of MedBots in the system increase
traffic which in turn causes more traffic jams. This is especially the case when
the MedBot is in the loading state. Also, allowing robots to reach a dead state
can bring a system to a halt due to a cascading effect of robots dying. It is also
worth mentioning that the energy required to operate the MedBot is more than
the energy required for a worker robot to reach a charging station on its own.
This is due to the effort needed by a MedBot to travel from its current location
to the dead robot and from the charging station back to its idle location.

5 Conclusions and Future Work

In this paper we presented results of a simple ambulance robot controller. Such
robots are useful for recovering other robots that are in a dead state. The incor-
poration of such robots in a system has the potential to increase its productivity.
This however, comes with a price of increased energy cost and complexity.

It would be interesting to further investigate the effects of varying the de-
sign and mechanics of such ambulance robots on their performance. Methods
including active monitoring of dead robots can be further tested for environ-
ments that only allow for limited communication. Also, tests on environments
with dynamically changing routes can help validate the necessity for such robots.

References

[1] Arabasz W.J. Pankow K.L. Burlacu R. Pechmann, J.C. and M.K. McCarter.
Seismological report on the 6 aug 2007 crandall canyon mine collapse in utah.
Seismological Research Letters, 2008.

[2] M. C. Silverman, D. Nies, B. Jung, and G. S. Sukhatme. Staying alive: a
docking station for autonomous robot recharging. In Proc. IEEE Interna-
tional Conference on Robotics and Automation ICRA ’02, volume 1, pages
1050–1055, 11–15 May 2002.

[3] Illah Nourbakhsh Terrence W. Fong and Kerstin Dautenhahn. A survey of
socially interactive robots. Robotics and Autonomous Systems, 2003.

[4] Richard Vaughan. Massively multi-robot simulation in stage. Swarm Intel-
ligence, 2(2):189–208, December 2008.

[5] Jens Wawerla and Richard T. Vaughan. Near-optimal mobile robot recharg-
ing with the rate-maximizing forager. 4648:776–785, 2007.

[6] J. Yuh. Design and control of autonomous underwater robots: A survey.
Auton. Robots, 8(1):7–24, 2000.

8


